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Two and three dimensional lattice Monte Carlo models have been developed to understand crystal growth
and phase stability of different structure. Growth of stoichiometric zinc blende phase GaAs is presented using
rates for atom addition, surface diffusion and temperature as the external controllables. To characterize the
morphology of the films, the evolution of the mean square surface roughness with temperature and time has
been computed. Statistical averages indicate that the roughness decreases at higher growth temperatures since
atom diffusion is enhanced. This also allows the surface to maintain lower roughness for the entire growth
duration. Thereafter, Nudged Elastic Band (NEB) calculations are described and performed for application
to the 3D Monte Carlo simulations. Finally, 3D Lattice Monte Carlo applications are presented with the
Metropolis algorithm for equilibrium structure calculation and Kinetic Monte Carlo for diffusion of vacancy.

I. INTRODUCTION

Lattice Monte Carlo methods are a class of simula-
tion techniques to study the evolution of a given crystal
structure. Lattice Kinetic Monte Carlo methods have
been employed to study crystal growth, defect dynamics
etc in several metallic and non-metallic systems. These
methods are usually used in conjunction with Density
Functional Theory or Molecular Dynamics calculations
to obtain crucial inputs for rate calculation in the Monte
Carlo process. Early stages of wurtzite GaN growth
along (0001) were studied recently by lattice kMC1,2. By
including ab initio rates for different atomic rearrange-
ment processes, morphological evolution from random
clusters to ordered island formation was captured suc-
cessfully by the model. Atomic deposition and surface
diffusion were the considered processes while defect for-
mation and bulk diffusion were neglected. The effect of
the substrate surface ((0001) vs (011̄0)) wurtzite GaN
growth has also been investigated3. Growth of rocksalt
TiN along (001) has also been modeled by lattice kMC to
study the formation of dense and porous microstructures
under different growth environments4.
This article is organised as follows. In section II, the 2D
lattice kMC implementation is discussed. Crystal growth
of GaAs (model III-V semiconductor) has been studied
by simulating surface adsorption and diffusion processes.
The relevant reaction rates are obtained from literature.
In section III, 3D simulations are discussed. We have
designed a set of NEB simulation to study vacancy dif-
fusion in crystalline silicon. The relevant energy barri-
ers obtained from NEB simulations are then used for 3D
Lattice Monte Carlo simulations. Additionally, the equi-
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librium structural arrangement of GaAs is established by
Metropolis Monte Carlo methods.

II. 2D LATTICE MONTE CARLO FOR CRYSTAL
GROWTH

GaAs is one of the several semiconducting crystals be-
longing to the III-V family that is known to exist in zinc
blende and wurtzite phases. Epitaxial growth of thin
films, nanowires and other architectures have revealed
the existence of both phases and the reasons for the ob-
served phase transformations are still being investigated.
Recently it was shown that initial stages of nanowire
growth result in mixed phases (blende-wurtzite)5. In-
creasing growth duration was found to result in phase
purification. Evolution of the crystallinity is also a func-
tion of the growth conditions, precursors and nature of
the substrate. In this study, we simulate the homoepi-
taxial growth of a zinc-blende phase film on a substrate.
The assumptions in this model are listed below.

(i) Fixed crystal structure. The materials is assumed
to grow in the zinc blende phase for all considered
temperatures. This does not capture the possibility
of transformations to the wurtzite phase.

(ii) Only atom addition and surface diffusion processes
are considered.

(iii) Homoepitaxial process. There is no lattice mis-
match or strain at the substrate/film interface.

A. Simulation cell and algorithm

For growth along the (111) surface, the substrate is
defined to contain 30 lattice sites. At each temperature,
the simulation was run for a total time of ttotal = 0.1
seconds. The simulation time was incremented after
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each diffusive step according to the Residence Time
Algorithm. To model growth of the crystal, a new atom
(Ga or As) was added to a randomly chosen site every
tadd seconds. In between successive addition steps, the
surface species are allowed to diffuse. For a given Monte
Carlo step, surface atoms at each of the 30 sites are al-
lowed to diffuse to the site on the left and right provided
there is a vacancy. The total rate

∑
r is obtained by

summing over the rates of all possible transitions. The

time step for each step is calculated as −Log(r1)∑
r where r1

is a random number ∈ (0, 1]. For results discussed here
tadd was set to 10−4 s. The total number of atoms added
is given by ttotal

tadd
= 1000. The surface profile, evolution

of the mean square roughness as a function of time and
temperature are discussed below. At each temperature,
the simulation was repeated 6 times and the averaged
properties are presented here.

FIG. 1. Substrate showing perfectly ordered GaAs lattice.
Ga and As atoms are depicted by blue and red balls circles
respectively. One layer along the < 111 > direction is defined
as one Ga-As pair.

Projection of 3D zinc blende lattice on a plane
Each atom in the zinc blende structure is tetrahedrally
bonded to 4 atoms of the other species. These are 4
nearest neighbours at the NN1 position. The next near-
est neighbours of an atom are the 12 NN2 neighbours
on the same FCC lattice. The planar 2D representation
has reduced number of NN1 and NN2 sites since there is
a projection overlap. Consequently, only 3 of the 4 NN1
positions and 6 of the 12 NN2 positions are visible.

B. Reaction rates

The reaction rate for each surface diffusion step is calcu-
lated by using the Arrhenius expression.

r = ν exp

(
−Eb

kT

)
= ν exp

(
−E0 + ∆E

kT

)
(1)

where ν = 1013/s is the jump frequency, Eb is the
energy barrier for the diffusive jump, k = 1.308 x 10−23

J/K is the Boltzmann constant and T is the temper-
ature. E0 = 1.26 eV is the base diffusion barrier and
∆E = Ef −Ei captures the local configurational energy
difference between the jump sites. In this simulation,
E is evaluated by counting the bond energies up to
the second nearest neighbour for each site. The bond
energies for the Ga-Ga, As-As and Ga-As interactions

are listed in Table .

ENN1(eV) Ga As ENN2 (eV) Ga As
Ga 0.3 0.5 Ga 0.15 0
As 0.5 0.1 As 0 0.05

TABLE I. First and second nearest neighbour energies6

E =
∑
NN1

ENN1 +
∑
NN2

ENN2 (2)

The acceptance/rejection criteria for a transition is
set as follows. If Ef − Ei > 0 (hop to a better coordi-
nated site), Eb = E0. If Ef − Ei < 0 (hop to a poorly
coordinated site), Eb = E0 − ∆E. This formalism for
diffusion rate calculations was borrowed from6.

C. Results and discussion

1. Morphology evolution

Since the total number of atoms added at each tem-
perature was constant, the average height of the films
is expected to be the same (since 1000 lattice positions
will be occupied). However, the surface morphology is
expected to evolve with changing temperature. It is ob-
served that the surface becomes smother at higher tem-
peratures. From the diffusion rate equation, higher T
results in faster rates and consequently the time incre-
mented after every diffusive step is lesser. This allows for
enhanced surface diffusion between atom addition steps.
As a result, there is sufficient time for the surface atoms
to re-organise themselves into a higher coordinated state.
Graphics obtained at each temperatures are shown in
Figures 2-7. The inset for each figure is from another
simulation using the same parameters.

FIG. 2. Surface at 1000 K after 0.1 s.
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FIG. 3. Surface at 1100 K after 0.1 s.

FIG. 4. Surface at 1200 K after 0.1 s.

FIG. 5. Surface at 1300 K after 0.1 s.

FIG. 6. Surface at 1400 K after 0.1 s.

FIG. 7. Surface at 1500 K after 0.1 s.

2. Roughness evolution

The mean square roughness (MSR) of the (111) growth
front was calculated after each time step increment.

ρ2 =< [h(r, t)− h̄(t)]2 >

where ρ is the MSR, h(r, t) is the height at each lattice
point r at time t and h̄(t) is the height averaged over all
lattice points at time t. These results were compared

FIG. 8. The surface roughness calculated after 6 simulations
at each temperature is plotted here. A nearly monotonous
decrease in the MSR is observed with increasing temperature.
Each layer along the (111) direction is defined as a Ga-As pair.

with previous publications to check the validity of the
predicted trends. Several reports have shown the film
roughness in III-V materials to reduce with increasing
growth temperatures. Experimental studies using
Atomic Force Microscopy7 show the surface roughness
of GaN to decrease from ≈ 40 nm (550◦C) to ≈ 5 nm
(880◦C). InAs morphology was also shown to evolve
when the temperature was increased from 900◦C to 1200
◦C8. Additionally, time evolution of roughness measured
by surface reflectivity techniques also show oscillatory
behaviour as computed from this kMC simulation.
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FIG. 9. The time evolution of surface MSR shows identical
qualitative behaviour for all temperatures studied. The oscil-
latory pattern indicates the growth of successive layers. The
MSR for higher growth temperature is lower throughout the
entire duration of the growth process.

This simulation only accounts for ad-atom addition
and diffusion on the same layer. To accurately simulate
real crystal growth, other phenomena such as long range
diffusion, multi-step diffusion, atom desorption also
need to be accounted for. Most importantly, this model
is suitable to study structure whose phase stability is
known. Since this assumes a rigid lattice model, it
cannot capture temperature dependent crystal structure
transformations. T capture those phenomena, one
needs to include the possibility of additional lattice sites
and calculate the relative probabilities of each possible
Monte Carlo process. Further, kMC can be interfaced
with atomic pair potentials to perform non-lattice
simulations. If the crystal stability of a material is
not known a priori, simulations should predict phase
formation and stabilities.

III. 3D LATTICE MONTE CARLO

A. Nudged Elastic Band calculations

The nudged elastic band (NEB) is a method for
finding minimum energy paths between two initial and
final positions. Linear interpolation from initial to
final position might not be the minimum energy path.
Therefore, a number of intermediate images along the
reaction path have been used to optimize. Both the
atomic configuration and the energy barrier associate
with the transition can be investigated by this method.
We performed the implementation of NEB method in
LAMMPS9 software using 8 replicas of a system. In this
work, we used the Stillinger-Weber (SW) potential for

silicon. Two different systems were studied. First, we
carried out a single vacancy migration in bulk and then
we studied a vacancy migration with only taking the
first nearest neighbors into account.

To get the vacancy migration barrier in bulk, we have
simulated a 4*4*4 supercell with periodic boundary
conditions in all three directions containing 511 atoms
and one vacancy. None of the Si atoms are fixed and
we let the system to get relaxed during the hop. The
energy barrier obtained from the NEB method is about
0.402 eV (Figure 10). If we fix all other atoms to avoid
rotation and translation in all directions, we get a higher
energy barrier of 1.2 eV. However, this energy barrier is
overestimated cause when an atom hops to the vacancy
it can pushes the other atoms away and therefore the
energy barrier might be smaller. The Vacancy migration
barrier that we got with this method is comparable
with the energy barrier from the literature (Table II).
Then we will use this barrier for 3-dimensional vacancy
diffusion simulations which has been explained in the
next section.

FIG. 10. Climbing image nudged elastic band data for silicon
vacancy migration in bulk.

Method Vacancy Migration Barrier (eV)
NEB 0.402
MD10 0.43
CP11 0.3

DFT12 0.4
Experiment13 0.5

TABLE II. Vacancy migration barrier for Silicon in bulk. The
data labeled by NEB is the result from this work

To incorporate surface effects for 3D growth simula-
tions for FCC silicon structure, further NEB calculations
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is needed. As alluded to earlier, in this study, we restrict
our attention to monitoring the diffusion of a single
vacancy. We first discuss results for a single vacancy
migration in bulk. However, to incorporate surface
effects, it might be possible that two or more vacancies
exist adjacent to the atom that is hopping. Therefore,
we did a set of NEB calculations for a silicon atom hop
where there are two or more vacancies exist. To simplify
the problem, we only consider first nearest neighbors
(Fig. 11). Therefore, there are 16 possibilities. Then
NEB calculation is carried out to obtain the energy
barriers. In these simulations, we fixed all the other
atoms and move just one atom from initial position
to the final position as you can see in Fig. 11a. The
energy barriers are tabulated in table III. The first row
in table III refers to figure 11a where the hopping atom
has 3 nearest neighbors and the vacancy has 4 nearest
neighbors (3*4). While after the migration the vacancy
has 4 nearest neighbors and that atom has 3 nearest
neighbors (4*3).

FIG. 11. Migration path of a single silicon atom hop. (a)
refers to the first row of Table III and (b) refers to the second
row

B. Lattice Metropolis Monte Carlo

1. Theory of Metropolis Monte Carlo

Metropolis Monte Carlo method14 is a method that is
used to sample the configuration space to compute cer-
tain quantities. For example, the expectation value of a
quantity A(r1, r2, ..., rn) is given by

〈A〉 =

∫
1

Z
A(r1, r2, ..., rn)exp

(
−E(r1, r2, ..., rn)

kbT

)
dr1dr2...drn

(3)

Initial config. Final config. EBF EBR
1 3*4 4*3 0.9027 0.9027
2 2*4 3*3 2.1683 0
3 1*4 2*3 4.3366 0
4 0*4 1*3 6.5049 0
5 3*3 4*2 0 2.1683
6 2*3 3*2 0.5325 0.5325
7 1*3 2*2 2.1683 0
8 0*3 1*2 4.3366 0
9 3*2 4*1 0 4.3366
10 2*2 3*1 0 2.1683
11 1*2 2*1 0.2409 0.2409
12 0*2 1*1 2.1683 0
13 3*1 4*0 0 6.5049
14 2*1 3*0 0 4.3366
15 1*1 2*0 0 2.1683
16 0*1 1*0 0 0

TABLE III. migration barriers for a silicon atom hop with
only taking first nearest neighbors into account. EBF stands
for forward energy barrier and EBR stands for reverse energy
barrier.

To uniformly sample the configuration space is compu-
tationally prohibitive for higher dimension configuration
spaces. Hence, in Metropolis Monte Carlo, an impor-
tance sampling scheme is employed i.e. more probable
samples (by the Boltzmann Distribution) are picked more
frequently by using a suitable random walk in the con-
figuration space.

The random walk algorithm is as follows:

• From a configuration a with energy Ea, pick a new
configuration b with energy Eb.

• If Eb < Ea unequivocally accept the new configu-
ration for sampling, else accept with a probability

of exp

(
(Ea−Eb

kbT

)
Also, a requirement of the random walk is detailed bal-

ance. Detailed balance mandates that after considerable
time steps the following should hold.

W (a→ b)P (a) = W (b→ a)P (b) (4)

where P (a) probability of state a and W (a→ b) is prob-
ability of transition from state a to state b. It can be
trivially shown that the above the above scheme honors
equation 4.

2. Simulation Example: Equilibrium Structure of Ga-As

To test the method, we have demonstrated the forma-
tion of the equilibrium structure of Ga-As on a diamond
structure lattice starting from a random initial distribu-
tion of Ge and As atoms. Ea − Eb is computed from a
difference in environments before and after a swap of the
positions of two randomly picked atoms. Only the first
nearest neighbours have been used to account for the
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bonding environment. The bond strengths assumed for
the calculation were Ga-Ga=0.3 eV, Ga-As=0.5 eV and
As-As=0.1 eV. Details of the simulation are as follows:

FIG. 12. Snapshots at three instances of the Ga-As (Ga:red;
As:blue) Metropolis Monte Carlo as viewed from the [100]
direction. a) Initial b) Intermediate c) End. Total number of
atoms is 216.

• Orthonormal lattice vectors of lattice constant =
10.0 bohr (calculation indifferent to lattice con-
stant) are used with each unit cell basis consisting
of eight points corresponding to the usual FCC-
diamond structure.

• The grid is built up by specifying Nx, Ny, Nz which
are number of unit cells in each lattice direction
making up total of 8×Nx ×Ny ×Nz lattice sites.

• Periodic boundary conditions are enforced on each
direction.

• The atoms are initially seeded randomly with a 50-
50 percent probability for each of the two species.

As seen in Fig 12, the arrangement of the Ga (red) and
As (blue) atoms go from the initially random configura-
tion to the zinc-blende which is typical of GaAs crystal.
The result is also intuitive since formation of the Ga-As
bond is most favourable given its large bond strength.
Hence, in equilibrium, each atom sits at the centre of a
tetrahedron with four atoms of the other species occupy-
ing the vertices of the tetrahedron.

To study the effect of temperature, the above simula-
tion was repeated at three temperatures of 400 K, 600
K and 800 K. It was found that the energy of the 400
K case dropped quickly in the initial parts but later the
drop was slower. On the other side of the spectrum, the
800 K dropped relatively slower than the 400 K case but
retained the pace until the end. This can be rationalized
by a couple of arguments. Lesser temperature aids to
more often reject the positive energy difference jumps and
hence has a higher rate of drop. However, lesser temper-
ature also increases the possibility of getting temporar-
ily stuck in a local minima of the configuration space.
The plateaus in figure 13 for the T = 400 K and 600 K
are clearly symptoms of this phenomenon. For the 800
K however, plateaus are relatively less pronounced since
higher temperature prevents getting trapped in a local
minima. Simulated annealing15 and parallel tempering16

are some ways to get around this problem for lower tem-
perature simulations.

FIG. 13. Temperature dependence of Energy (eV) vs
Timestep plot for the Metropolis algorithm for the 216 atom
system. Energy is measured relative to the starting random
configuration

The idea of the random walk getting stuck in the local
minima of the configuration space was mentioned in the
last paragraph. We now demonstrate this with an exam-
ple. We consider a similar system as above albeit with
very large number of atoms (8000 atoms) with temper-
ature 800 K. Instead of starting from a random configu-
ration, we start from a configuration (Figure 14.a where
the atoms (red: Ga and blue: As) are separated. Figure
14.b represents the result of the random walk after 100
million MC steps. It is interesting to note that in spite of
a fairly large number of steps, the equilibrium is not at-
tained. To resolve this we, employ a simplified version of
simulated annealing. In the first 6 million MC steps, we
elevate the temperature to three times the desired tem-
perature. And in the next 1 million MC, we slowly drop
the temperature to the 800 K. With this exercise, the
equilibrium structure is reached within 40 million MC
steps. This effect is also amply evident in the figure 15
where annealing is shown to enable the system to reach
a state of minimum energy.

FIG. 14. Simulated Annealing Ga-As system containing 8000
atoms a) Starting configuration b) Without annealing at 100
million MC steps c) With annealing at 40 million MC steps

We now discuss some of the shortcomings of the model.
Firstly the lattice MC will only work if the desired
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FIG. 15. Simulated Annealing: Plot of Energy (eV) vs MC
Steps

equilibrium structure can be described by the limits
of the configuration space spanned. For example, the
above grid condition will make it impossible to predict a
wurtzite structure since the initial grid does not allow it.
We have used only first nearest neighbour interaction for
simplicity. However, for better accuracy, one would have
to use an atomic potential to evaluate the system energy
before and after the proposed flip. Finally, one has use
some additional conditioning such as parallel tempering
or simulated annealing to ensure the random walk is ef-
fective.

C. Lattice Kinetic Monte Carlo

While the Metropolis algorithm described above is em-
ployed to study equilibrium structures or spanning the
potential energy landscapes, the Kinetic Monte Carlo17

is used to study dynamic processes like defect migration,
phase transformation, etc. In this section, we will simu-
late vacancy hop using lattice Kinetic Monte Carlo.

1. Problem Description

We consider a periodic system of 1000 Si atoms in the
usually diamond lattice structure. We introduce a va-
cancy by removing one atom. We generate the look up
table for the applicable KMC processes. In this case, the
only process is vacancy hop for which we already have
a calculated migration energy of Ea = 0.402 eV. The
objective is to retrieve back the activation barrier from
the Mean Square Displacement of the vacancy. The sim-
ulation is run at 800 K , 1000 K, 1200 K and 1400 K.
Periodic boundary conditions are applied.

2. Results

The diffusion hop process is carried out for the above
temperatures and the MSD is recorded as a function of

time. A sample plot of the MSD vs time is shown in
figure 16. At each time, the MSD will form a Gaus-
sian about the mean. Hence, to reduce the scatter, we
have computed the slope of the MSD as an average of 20
simulations for each temperature. This data is collated
and the plot shown in figure 17. We get back a slope of
Ea = 0.32 eV from the plot.

FIG. 16. Mean Square Displacement vs Time

FIG. 17. Vacancy Diffusivity vs Temperature−1

IV. CONCLUDING REMARKS

Surface modification under different growth conditions
was studied by computing the mean roughness during
growth. Roughness evolution with temperature and time
indicates the formation of smooth surfaces at higher tem-
peratures where ad-atoms diffuse at a faster rate.

NEB calculations were carried out to obtain the en-
ergy barriers for silicon vacancy migration. First, va-
cancy migration in bulk was studied using SW potential
for silicon. Thereafter, a single atom hop was studied
with only taking first nearest neighbors into account. All
in all there are 16 possibilities with one or more vacan-
cies. The energy barriers will be then used for 3D Lattice
Monte Carlo simulations.

In 3D Lattice Monte Carlo, the Metropolis algorithm
was used to calculate the equilibrium structure of GaAs.
Simulation annealing was demonstrated to prevent the
random walk from being trapped in a local minima. The



Lattice Kinetic Monte Carlo 8

problem of diffusion migration of Si vacancy in bulk was
studied using Kinetic Lattice Monte Carlo.

This simulation only accounts for ad-atom addition
and diffusion on the same layer. To accurately simulate
real crystal growth, other phenomena such as long range
diffusion, multi-step diffusion, atom desorption also need
to be accounted for. Most importantly, this model is suit-
able to study structure whose phase stability is known.
Since this assumes a rigid lattice model, it cannot cap-
ture temperature dependent crystal structure transfor-
mations. T capture those phenomena, one needs to in-
clude the possibility of additional lattice sites and cal-
culate the relative probabilities of each possible Monte
Carlo process. Further, kMC can be interfaced with
atomic pair potentials to perform non-lattice simulations.
If the crystal stability of a material is not known a priori,
simulations should predict phase formation and stabili-
ties.

V. CONTRIBUTIONS

All results in section II were obtained by Aditya. Writ-
ing and implementation of the kMC code, graphics gen-
eration and data analysis was entirely done using Mathe-
matica 11.0. The bond energies for the nearest neighbour
interactions were sourced from literature. The results in
section III were obtained by Ramin. The simulations was
entirely done using Lammps9 and the figures were gen-
erated using gnuplot18. The results in section IV and V
were obtained by Nelson. For the 3D calculations, the
code was implemented in C++ and the graphics were
generated using VMD19.

ACKNOWLEDGMENTS

1Manjusha Chugh and Madhav Ranganathan Applied Surface Sci-
ence Volume 422, 15 November 2017, Pages 1120-1128

2Manjusha Chugh and Madhav Ranganathan Phys. Status Solidi
C 12, No. 45, 408412 (2015)

3Dongwei Xu1, Peter Zapol, G. Brian Stephenson and Carol
Thompson The Journal of Chemical Physics 146, 144702 (2017);

4F. Nita, C. Mastail, and G. Abadias PHYSICAL REVIEW B
93, 064107 (2016)

5Chen Zhou, Kun Zheng, Zhi-Ming Liao, Ping-Ping Chen, Wei Lu
d and Jin Zou J. Mater. Chem. C, 2017, 5, 5257-5262

6Kristofer Reyes, Peter Smereka, Denis Nothern, Joanna Mirecki
Millunchick, Sergio Bietti, Claudio Somaschini, Stefano San-
guinetti and Cesare Frigeri PHYSICAL REVIEW B 87, 165406
(2013)

7Wenliang Wang, Haiyan Wang, Weijia Yang, Yunnong Zhu and
Guoqiang Li Scientific Reports volume 6, Article number: 24448
(2016)

8Sebastian Tamariz, Denis Martin and Nicolas Grandjean Journal
of Crystal Growth Volume 476, 15 October 2017, Pages 58-63

9J Comp Phys, 117, 1-19 (1995).
10G.H. Gilmer et al. /Nucl. Instr. and Meth. in Phys. Res. B 102

(1995) 247-255
11P.E. Blochl et al., Phys. Rev. Lett. 70 (1993) 2435
12Fedwa El-Mellouhi et al. PHYSICAL REVIEW B 70, 205202

(2004)
13P G Coleman 2011 J. Phys.: Conf. Ser. 265 012001
14W. K. Hastings Biometrika, Volume 57 , Issue 1, 1 April 1970
15van Laarhoven, Peter J. M., Simulated Annealing: Theory and

Applications 1987
16Earl, David J. and Deem, Michael W., Phys. Chem. Chem. Phys,

2005 vol7, issue 23.
17Voter, Arthur F., Radiation Effects in Solids, Springer Nether-

lands 2007
18T. Williams, C. Kelley, Gnuplot 4.6: an interactive plotting pro-

gram, 2013
19Humphrey, W., Dalke, A. and Schulten, K., ”VMD - Visual

Molecular Dynamics”, J. Molec. Graphics, 1996, vol. 14, pp. 33-
38.


