
An MGI approach for discovering solid-state electrolytes materials for Li-ion 
battery  

Introduction to solid-state electrolyte materials for Li-ion batteries:  

Li-ion batteries have become an integral part of our modern lifestyles because of their ubiquity               
and versatility. These devices are the leading power source for mobile electronics like             
smartphones, laptops, cameras, e-readers, tablets, etc. because of their higher energy and            
power density as compared to the other energy storage technologies.1 A typical Li-ion battery              
consists of three prime components viz. a positive electrode (cathode), a negative electrode             
(anode), a separator, as shown in Figure 1a.1 All three components have porous structures,              
where the pores are filled with a liquid electrolyte. The liquid electrolyte acts as a medium for                 
Li-ion transfer  between the electrodes during the battery operation.  

a) b) 

 

Figure 1. a) Schematic of a Li-ion battery.1 b) Schematic of various degradation mechanisms in a Li-ion 
battery based on liquid electrolytes.2  

Despite the widespread use of the liquid-electrolyte based Li-ion batteries, they suffer from             
several degradation mechanisms and severe safety challenges, as shown in Figure 1b.2 Most of              
the liquid electrolytes used in the Li-ion batteries are solutions of Li salts in organic solvents                
such as ethylene carbonate, dimethyl carbonate, diethyl carbonate, etc. Such solvents are            
electrochemically unstable below 1V vs. Li/Li-ion, which is the operating potential range of most              
widely used carbon-based anodes (hard carbon, graphite, etc.).3 This causes the electrolyte to             
reduce on the anode surface and form an insoluble, ionically conducting layer known as a solid                
electrolyte interface (SEI). The reduction of the electrolyte leads to loss of the Li inventory of the                 
battery, and consequently its capacity. Over the lifetime of a battery, this SEI layer continues on                
growing to cause the battery to degrade. SEI-led degradation is even more severe when Li               
metal is used as an anode.3 Secondly, the solvated Li-ions co-intercalate into the active material               
particles of the carbon-based anodes, which cause the exfoliation of the graphene layers and              
loss of the active material.3 Lastly, Li-ions are known to deposit in metallic form and form                
hair-like structures called dendrites on the surface of the carbon-based anode, especially            



graphite, and Li  
anode under low temperature or high current operations. The dendrites can penetrate the 
porous  separator and get in contact with the 
cathode, thereby causing an internal 
short-circuit, as shown  in Figure 1b. Moreover, 
the organic solvents used in liquid electrolytes 
are highly flammable, thus making the Li-ion 
battery based on them highly susceptible to 
catching fire.  

Since most of the aforementioned issues are       
associated with the organic solvents and the       
liquid state of the electrolyte, they can be        
overcome by replacing the liquid electrolyte with       
solid-state electrolytes. Additionally, solid-state    
electrolytes facilitate the design of Li-ion      
batteries with much higher energy density as       
they enable pack miniaturization, use of high voltage cathode materials, Li-metal anode, and             
Sulfur cathodes.4  

Despite the apparent benefits, the solid-state  
batteries are far from commercialization as the  
discovery of solid-state Li-ion conductors has  
been slow. The discovery of new Li-ion  
conductors has primarily progressed by  
extending the already known superconducting  
compounds into new compositional spaces,  
that too experimentally. Figure 3 shows the  
history of the discovery of the different solid  
state conductors between 1960 and 2010.4 It  
can be seen that only ten classes of Li-ion  
conducting materials have been discovered  
from over five decades of research.  
Furthermore, when the know Li-ion conducting  
material classes are evaluated on the following  
design requirements for battery application: a) 
high Li-ion conductivity (> 1e-4 S/cm) at room 
temperature, b) stability in wide voltage range 
against Li/Li-ion (0-5.5 V), c) inertness 
towards  Li metal, d) inertness towards 
oxygen  

Figure 

3. 

History of the discovery of the  solid-state Li-ion 
conductor. The crosses  represent the 
non-fulfillment of one of  the design criteria.4 



environment4, we are only left with a handful of options as shown in Figure 4.4 It is this slow pace                    
of the discovery of Li-ion conductors that calls for a need for an overhaul of the current discovery                  
approach and application of an integrated MGI approach that combines the powerful yet             
independently used methods of data-led knowledge discovery, and estimation of the required            
properties through computation and experiments. The material science community has already           
made some efforts in this direction. In this document, we will first summarize the efforts made so                 
far along with providing a critique on the utility of the integrated approaches used so far.                
Secondly, we will propose an MGI approach that can overcome some of the limitations of the                
methods  
reported in the literature so far.  

Review of the approaches reported in the literature and preliminary results:  
1. Unsupervised clustering of XRD data:  

The lack of large database for Li-ion conductivity values hinders any data-led knowledge             
discovery pertaining to the structure-conductivity relations. Though some studies which use           
employ linear regression models for correlating the known conductivity values with the structural             
features such as an average number of Li-Li bonds, Li-Li and Li-anion bond lengths, sublattice               
coordination etc.5 However, the employed method is highly susceptible to overfitting as only 40              
data points were used for fitting the model. Secondly, Li diffusivity (thereby, conductivity) is a               
tensor of rank 3, which cannot be correlated with the scalar quantities used in the study.  

Unsupervised machine learning is a great method for circumventing the problem with the lack of               
labeled data, and XRD data makes a good dataset for performing the unsupervised clustering              
as we have an abundance of the XRD data and it has direct information about the structure of a                   
material, even though convoluted. Zhang and coworkers reported the use of unsupervised            
clustering of the XRD data for discovering new good Li-ion conductors.6 We adopted their              
approach for top-down spectral clustering of the anion sublattice in this work. We employed              
hierarchal clustering on ternary and quaternary Li and O containing compounds. We obtained             
~15,000 XRD patterns from MP. In the first step of hierarchical clustering, we decided to find                
similarities and differences between potential materials based on crystal structures.  

The clustering algorithm we used for hierarchical clustering is called the Uniform Manifold             
Approximation and Projection (UMAP). It is a non-linear dimensionality reduction approach. We            
looked at all the XRD data as a spectrum, and firstly we analyzed the occurrence of peaks in all                   
the XRD patterns. The first step of our clustering resulted in two distinguished clusters, as               
shown in Figure 4a. The compounds in the cluster on the right side have low structural as most                  
of them have triclinic, monoclinic structures. In comparison, compounds in the left clusters have              
high symmetry crystal structure such as cubic, hexagonal. Although, the demarcation is not             
perfect as compounds with an orthorhombic crystal structure are present in both the clusters.              
Therefore, we  
need further refinement of our clustering. Thus, for making the analysis more accurate, we              



considered the intensity for each of those clusters to differentiate the XRD patterns based on               
their composition and assigned the real intensity value of the spectrum. The second level of               
clustering  resulted in several smaller clusters, as shown in Figures 4b and 4c.  

The distinct clusters achieved based on XRD data shows the efficacy of the deployed method to                
group the compounds with similar structure together. For further refinement of the clusters, we              
need more material descriptors. We describe the different material descriptors we selected in             
the  following sections.  

a) 

b) 

c) 
Figure 4. a) The two clusters achieved by the first level of unsupervised clustering of the XRD data. 
Further split of the two clusters are shown in b) and c).  



2. Anion sublattice:  

In their work7, Wang and coworkers identified an essential structure-property relation for            
predicting good Li-ion conductors. They reported that the Li containing crystalline materials            
where the anion forms a BCC sublattice are good Li-ion conductors. We tested their finding by                
analyzing the anion sublattice of materials (with high Li-ion conductivity, > 1e-5 S/cm) in the list                
curated by us. We used the structure matcher function with a framework comparator in the               
Pymatgen library8  

for testing the match between the anion sublattice and a standard bcc structure (Fe, mp-13, at                
room temperature). Table 1 summarizes our findings, along with the actual anion sublattice             
structure from the literature. It can be seen that the results of the structure matcher function are                 
pretty accurate. However, it is interesting to observe that not all the compounds with high Li-ion                
conductivity have a BCC anionic sublattice, e.g., Li2SnS3, which has a room temperature             
conductivity value of 1e-4 S/cm, has an FCC anionic sublattice9. Therefore, the criterion of a               
BCC anionic sublattice does not apply to all the materials, and we need to identify and                
incorporate additional material features that can explain the conductivity data trend for a more              
diverse set of  materials.  
Table 1. Comparison of the anion sublattice predicted by the structure matcher and reported in the literature.  

Compound  Anion sublattice match 
with  BCC using structure 
matcher 

Actual anion  
sublattice  
structure 

Li3PS4  TRUE  BCC7 

Li2SnS3  FALSE  FCC9 

LiLaTi2O6  FALSE  Not BCC 

Li3N  FALSE  HCP10 

Li3BrO  TRUE  BCC11 

Li7P3S11  TRUE  BCC7 

Li3InCl6  FALSE  CCP 

Li10Sn(PS6)2  TRUE  BCC7 

Li10Ge(PS6)2  TRUE  BCC7 

Li10Si(PS6)2  TRUE  BCC7 

Li3P  FALSE  HCP10 

Li7La3Zr2O12  FALSE  Not BCC 



 
 
3. Electronic and phonon band structures as additional material features:  

From the literature5,6,12, we have curated a dataset of 128 Li containing crystalline compounds              
whose conductivity is known either from experimental or ab initio methods. These compounds             
have been into four classes: groups I, V, VI, and VII of the periodic table. Li conductivity can be                   
expressed as σ = σ0exp(-Ea/kT). Figure 5a. shows the RT Li conductivity σ plotted against the                
activation barrier Ea for 108 of the 128 compounds, which are listed in Materials Project (MP).13  

The linear trend observed over 14 orders of conductivity suggests that the pre-factor σ0 is               
roughly constant for all the materials, and Ea is critical in determining σ. We hypothesize that the                 
average vibrational frequency for Li atoms is not significantly different across all compounds.             
The  activation barrier Ea is related to the local bonding environment of the Li atoms.  

The following section describes a few case studies and trends observed in our conductivity              
dataset (108 compounds), following which we propose to investigate electronic and phononic            
band structures in greater detail. From our dataset, we were able to compare the activation               
barriers/ionic conductivity for compounds having identical crystal structures and elemental          
compositions, only differing in the anion species. As an example, Figure shows that the              
activation barriers of Li4GeO4, Li4SiO4, Li3PO4, and Li3N were decreased (and RT conductivity             
increased) by  substituting the anions with S, S, S, and P respectively. 

 
Figure 5. a) Linear behavior of σ(300K) vs. Ea indicates that σ0 is approximately uniform, and Ea is the                   
critical parameter. The dashed line at σ(300K) = 1E-4 S/cm shows the commonly considered criterion for                
superionic behavior. b) The substitution of anion species with a heavier element in the same group                
reduces the activation barrier and increases the RT ionic conductivity. b) The average thermal energy of                
neutrons at room temperature (300 K) is given by kT = 25 meV. For two Li conducting materials differing                   
by only the anionic species, the materials with the heavier anion will have a lower average phonon band                  

Li6PS5Cl  FALSE  Not BCC7 



center,  favoring the activation of certain phonon modes at room temperature.  

For the materials in our dataset, simple scalar quantities such as sub-lattice electronegativity,             
nearest neighbor count, bond length, etc. were not found to correlate with conductivity or the               
activation barrier. Hence, we explored parameters in the reciprocal space, which can be             
presumed to describe conduction better. In general, in Li contains compounds, the lighter Li              
atoms contribute more to the high-frequency optical modes. Heavier atoms like the anion             
species and other d-block or f-block elements contribute to the low-frequency acoustic modes.             
One important descriptor to characterize phonon band structures is the phonon band center,             
which can be  evaluated over the element resolved or cumulative density of states.  

 

Due to the scarcity of existing phonon dispersion data for the compounds depicted in Figure 6a. 
(phonon dispersions are available for only 13 compounds)We decided to investigate other Li 
containing compounds as well. From MP, we identified 134 Li containing materials with 
published  electronic and phononic band structures (no other elemental/structure restrictions 
imposed). In  other words, these 134 compounds can have other p,d,f block elements as 
constituents, which  were commonly observed in the conductivity database that we have 
curated. In Figure 6a, we  present the computed Li phonon band centers, classified according to 
3 metrics: crystal structure,  anion chemistry, and the total number of elements. The lack of any 
correlation suggests that Li  projected vibrational frequencies do not play a crucial role in 
influencing conductivity. The mean  
Li project phonon band center energy is scattered in a small window centered around 41 meV.                
To investigate further, we computed the total phonon band centers, integrated over all atoms in               
the compound. The total phonon band center can influence activation barriers since heavier             
elements in the compound will lower the band center energy, closer to the mean thermal energy                
of 25 meV at RT.  

 



Figure 6. a) Across all crystal structures, anions species and composition space, the element resolved               
phonon band center for Li is found to vary in a small window centered around 41 meV. 2 compounds                   
were found to have ε(ωav)< 35 meV and are not shown in the scatter plot. b). Negative correlations                  
between the average phonon band center energy and anion p-band energy referenced to the middle of                
the bandgap. Dashed lines depict linear trends observed for N, O, and F compounds. Lighter hues                
represent anions belonging to that particular periodic table group. Black and brown scatter points              
represent H and C,  
respectively. Due to limited phonon calculations available for crystals with known conductivity, MP was 
screened to identify materials with both electronic band structure and phonon band structure entries.  

Recent literature14 reports indicate a positive correlation between the total phonon band center             
and the migration barrier for diffusion. Increasing Se content in Na3PS4-xSex was shown to              
reduce the migration barrier for Li diffusion (and increase the conductivity), consistent with             
trends discussed earlier. Increasing Se content also reduces the total phonon band center             
energy since Se is heavier than S. In another article15, the barrier for O migration in perovskites                 
was shown to bear negative correlations with the electronic band center of the O p-bands.               
Following the ideas discussed in the literature, we examined correlations between electron and             
phonon dispersion  spectra in our 134-compound dataset.  

For a given compound, the element with the largest electronegativity value was designated as              
the anion species. The p-band center was computed by integrating the density of all the               
occupied electronic states and referenced with respect to the center of the bandgap. As              
expected, the Li phonon centers did not show any trend. The total phonon dispersion shows a                
negative correlation with the anion p-band center. In Figure 6b., we plot the total phonon band                
center against the anion  
p-band centers. The dashed lines showed the linear trend observed for compounds with N, O, 
and F as the anions. Other scatter plots with lighter hues represent anions in the corresponding 
group in the periodic table. Green hues are for pnictogenides, blue for chalcogenides, and red 
for  halides. Black and brown scatter points represent H and C, respectively. It is noted from the 
Figure  6b. that for N, O, and F based compounds, the total phonon band center energy is 
correlated  negatively with the N-p, O-p, and F-p band centers. A weaker correlation is observed 
for other  halide-based compounds, shown in the light red scatter points. Other nitrogen family 
anions (P,  As and Bi) are found to cluster in the bottom right region of the plot. A similar lattice 
dynamics based representation was recently described by Muy et al.16  

It is re-emphasized here that data presented in Figures 6a. and 6b. are for those Li compounds                 
in MP whose electronic and phononic dispersions have been calculated. For the 128 materials              
with known Li conductivity, electronic structure data exists for 89 and phonon structure data for               
only 13. It was hence not very meaningful to examine trends and correlations to explore               
underlying  physics.  

Proposed research:  



Figure 7. Flowchart indicating our proposed approach. 

 
Figure 8. Anion p-band center for compounds with known conductivity.  

1. Band structure screening:  

Na migration barrier in the Na3PS(4-x)Sex group has been shown to correlate with the total               
phonon band center. Separately, oxygen band centers in a class of perovskites have been              
shown to correlate with oxygen migration barriers. The preliminary data indicates a relation             
between the total phonon band center and anion band center for several compounds. However,              
computing any linear relationship of the band structure properties with experimental data            
requires additional caution. For simple isostructural compounds with different chemistries,          
migration barriers are related to the band structure. Since Li conductors are known to have up                



to 6 elements and are stable in several polymorphs, a direct comparison with experimentally              
measured activation energy is not entirely accurate. It is necessary to separate the formation              
and kinetic migration barriers.  

A. Electron dispersion:  

Since electronic structure data for many materials have been computed by high            
throughput methods, it serves as our first screening level. Initially, electronic structure            
data will be analyzed for compounds with known ionic conductivity. Oxides, sulfides, and             
nitrides look promising, with many high conductivity compounds having their p-band           
center  
around -4 eV to -3 eV from the bandgap center (refer to Figure 8). We plan to identify 
connections between compounds identified from XRD clustering methods and their 
electronic structure. Preliminary data presented here show several materials with anion p 
band centers around -3 eV from the bandgap center (the bottom right region in figure 
7b.) These materials will be selected for the next level of computational analysis. 
Materials in  this region also have comparatively small phonon band center energies, 
which has been  shown in the literature to correlate with small migration barriers.  

B. Phonon dispersion:  

Phonon dispersion properties for materials screened in part A will be computed to             
narrow our material space further. Crystals with average phonon energy around 20-40            
meV (room  temperature vibrations) will be screened for AIMD simulations. 

2. Ab initio Molecular Dynamics (AIMD) simulations:  

Data generated by molecular dynamics simulations will be used to validate the developed             
hypotheses and also be used to refine the screening criteria. We acknowledge that AIMD              
simulations at 300 K are costly. Extrapolation from higher temperatures often results in larger              
error windows for the predicted values. Hence, it is essential to devise effective screening              
strategies. Once enough representative AIMD simulations are run, we plan to quantify the             
correlations between features and conductivity for different groups in the periodic table. We then              
want to realize a scheme where the electron and phonon band structures can be used as                
descriptors to rapidly screen and identify new materials for AIMD simulations and            
recommendations for experimental validation.  

3. Experimental validation  

The experimental validation of the predicted material is essential for validating our overall             
approach. If the predicted materials cannot be synthesized with the existing methods, then new              
processes will be developed and optimized. The phase purity will be tested using the existing               
techniques of XRD, SEM-EDS, TEM, ICP-AES, etc. The conductivity measurements will be            
conducted by performing EIS. The feedback from the experimental study will inform the previous              
steps, e.g., the effect of impurity, grain boundaries, etc. on the conductivity value.  



Other considerations  

Li compounds can also have other d and f block elements which affect the bonding               
characteristics. The total phonon band structure characterizes their vibrational effects.          
Improving the accuracy of our screening criteria requires a further understanding of this             
composition space. Integrating SSE materials in a battery module also requires that the SSE is               
stable against the electrodes under operational voltages, lattice-matched to avoid large strains,            
etc. These considerations will also be  accounted for in our materials selection procedure.  

Impact of the proposed work  

Our proposed approach attempts at overcoming the limitations of various methods reported in             
the literature for bridging the information gap that exists between the data and computation. We               
combine the unsupervised clustering of the XRD data, with the anion sublattice, electronic and              
phononic band structures as the critical descriptors for predicting the conductivity of multiple             
classes of Li-ion conducting materials. The most important contribution that can arise from our              
study is the correlation between the electronic and phononic band structures, screening criteria             
for various classes of materials based on these structures. Additionally, the experimental study             
can contribute new synthesis methods to the literature. Lastly, the success of this study will be  
another step forward in the use of the MGI approach for discovering solid-state electrolyte 
materials for Li-ion batteries.  
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Supplementary information  

Budget:  

The project will be headed by 2 PI’s, one computational scientist and one experimentalist. 2 
Ph.D. students will work on this project.  

Year I   Year total 

Professor salaries  $100,000  

Ph.D. student salaries  $75,000  

Computing  $65,000  $240,000 

Year II   

Professor  $100,00  

Ph.D. student salaries  $75,000  

Computing  $43,000  

Experiment  $25,000  

Material  $15,000  $258,000 

Year III   

Professor salaries  $100,000  

Ph.D. student salaries  $75,000  

Material  $35,000  



 
 
Data management and dissemination:  

All computational and experimental data generated from our work will be hosted in a freely               
accessible repository. Materials data will be appended to MP, where applicable. The relevant             
machine learning algorithms and codes will be available on GitHub, for download and             
modification. 
The following types of data will be generated and recorded:  

1. Electron and phonon dispersions  
2. Diffusivity, conductivity and activation barriers categorized by crystal and element type 
3. Experimental synthesis maps  
4. XRD patterns, micrographs, spectroscopy data. 

Equipment  $75,000  $285,000 

Travel + miscellaneous  $17,000  

TOTAL AMOUNT REQUESTED   $800,000 


